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Wigner Matrices

Consider a random N × N Wigner real symmetric matrix

XN =
1√
N

WN =
1√
N

W11 W12 . . .
W12 W22 . . .

...
...

. . .


Wij are i.i.d. for 1 ≤ i < j ≤ N with

E[W12] = 0, E[W 2
12] = σ2, E[W 4

12] <∞

Wii are i.i.d. for 1 ≤ i ≤ N with

E[W11] = 0, E[W 2
11] <∞

If W12
d
= 1√

2
W11 is Gaussian, then the matrix is said to be

from the Gaussian Orthogonal Ensemble (GOE).
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Wigner semi-circle law

The most fundamental result for Wigner matrices is the
Wigner semi-circle law.
A real symmetric matrix with eigenvalues λ1 ≤ . . . ≤ λN
induces a measure, called the empirical spectral
distribution (ESD), on the real line given by 1

N
∑
δλi .

The ESD of XN converges a.s. in distribution to µsc where

dµsc(x)

dx
=

1
2πσ2

√
4σ2 − x21[−2σ,2σ],

and the largest (smallest) eigenvalue converges to 2σ
(−2σ).
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Wigner semi-circle law

The Stieltjes Transform, g, of a measure, µ, is given by:

g(z) =

∫
dµ(x)

z − x
.

If µ is an ESD of a matrix, M, then its Stieltjes Transform
can be written as

1
N

Tr(zI −M)−1 =: trN(R(z)).

The Stieltjes Transform of µsc satisfies the equation

σ2g2
σ(z)− zgσ(z) + 1 = 0.
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Deformed Wigner Matrices

Z. Füredi and J. Komlós (’81) first studied deformed Wigner
matrices.
They assumed the distribution on the entries of the random
matrix have a common non-zero mean, c.
This can be viewed as

WN + C

where (C)ij = c is a constant matrix.
The largest eigenvalue is Nc + σ2/c with Gaussian
fluctuations.
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Deformed Wigner Matrices

These results were extended to WN/
√

N + C/N.
The largest eigenvalue and the edge of the semicircle are
both of constant order.
First done with Gaussian Matrices by S. Peché (’06).
Then for Wigner matrices by S. Peché and D. Féral (’07).
A phase transition is observed depending on the value of c.
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Deformed Wigner Matrices

M. Capitaine, C. Donati-Martin and D. Féral (’09,’12)
consider different forms of the perturbation and higher rank
perturbations.
Assume the distribution is symmetric and satisfies a
Poincaré Inequality:

V[f (x)] ≤ E[|∇f (x)|2]

Large eigenvalues converge similarly to the rank one case.
They also show the fluctuations are non-universal for
several special perturbations.
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Deformed Wigner Matrices

Concurrent with our research Knowles and Yin also
consider finite rank perturbations.
They assume uniform subexponential decay of the entries
but allow the eigenvaules of the perturbation to change
with N.
Give the locations of the outlying eigenvalues for arbitrary
finite rank perturbations as well as the distributions when
the multiplicities of each eigenvalue of the perturbation is 1.
Also show that the distribution of the edge eigenvalues
stick to the edge eigenvalues of the non-perturbed model
and thus have Tracy-Widom fluctuations.
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Deformed random matrices

In this research we consider deformed random matrices
given by

MN = XN + AN

AN = U∗NΘUN has a fixed finite rank and eigenvalues
{θj}rj=1.
By the interlacing theorem N − r eigenvalues converge to
the semi-circle.
We are interested in the locations and fluctuations of the
remaining r eigenvalues.
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Results

Theorem (Pizzo, R., Soshnikov)

Let J+σ(resp.J−σ) be the number of j ’s such that θj > σ (resp.,
θj < −σ) and let

ρj := θj +
σ2

θj

then:
(a) For 1 ≤ j ≤ J+σ,1 ≤ i ≤ kj , λk1+...+kj−1+i → ρj

(b) λk1+...+kJ+σ
+1 → 2σ

(c) λk1+...+kJ−J−σ
→ −2σ

(d) For j ≥ J − J−σ + 1,1 ≤ i ≤ kj , λk1+...+kj−1+i → ρj

the convergence is in probability.
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Results
Theorem (Localized case -Pizzo, R., Soshnikov)(

cθj

√
N(λk1+...+kj−1+i − ρj), i = 1, . . . , kj

)
converges in distribution to the distribution of the ordered
eigenvalues of Vj .

Vj := U∗j (Wj + Hj)Uj ,

where Wj is a Wigner random matrix and Hj is a centered
Hermitian Gaussian matrix

E(H2
ss) =

(
m4 − 3σ2

θ2
j

)
+ 2

σ4

θ2
j − σ2

,

E(|Hst |2) =
σ4

θ2
j − σ2

.
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Results
Theorem (Delocalized case -Pizzo, R., Soshnikov)
The difference between(

cθj

√
N(λk1+...+kj−1+i − ρj), i = 1, . . . , kj

)
and the vector formed by the (ordered) eigenvalues of a kj × kj
GOE (GUE) matrix with the variance of the matrix entries given
by

θ2
j σ

2

θ2
j − σ2

plus a deterministic matrix with entries given by

θ2 − σ2

θ4

∑
i,j

ul
iµ3,iju

p
j

converges in probability to zero.
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Characterization of outlying eigenvalues

If z is an eigenvalue of MN

det(zIN − XN − AN) = 0

if additionally it is not an eigenvalue of XN then

det(z − XN − AN) = det(z − XN)det(I + RN(z)U∗NΘUN)

= det(z − XN)det(I + ΘUNRN(z)U∗N)

= det(z − XN)det(Θ)det(Θ−1 + UNRN(z)U∗N)
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Resolvent

We begin with the resolvent identity:

zRN(z) = IN + XNRN(z)

zE[Rij(z)] = δij +
∑

l

E[XilRlj(z)]

and use decoupling formula

E(ξφ(ξ)) =

p∑
a=0

κa+1

a!
E(φ(a)(ξ)) + ε
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Resolvent

On the diagonal this becomes

E[Rii(z)] = 1/(z − σ2gσ(z)) + O(N−1) = gσ(z) + O(N−1)

On the off-diagonal this implies

E[Rij(z)] =
κ3,ij

N3/2 g4
σ(z) + o(N3/2)

Similarly, we can bound the variance of quadratic forms

V[u∗NRN(z)vN ] = O(N−1)
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Resolvent

Let uN ,vN be a sequence of N dimensional unit vectors.

√
NE[u∗NRN(z)vN ]− 1

N
g4
σ(z)u∗NM3vN =

√
Ngσ(z)u∗NvN +o(1)

where M3 = (1− δij)κ3,ij .

Furthermore, if ‖uN‖1 or ‖vN‖1 is o(
√

N) then the second
term on the left side is o(1).
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Characterization of outlying eigenvalues

The eigenvalues are z such that

det(Θ−1 − U∗NR(z)UN) = 0.

By the previous estimates and Markov’s Inequality

‖U∗NRN(z)UN − gσ(z)Ir‖ = O(N−1/2)

with probability going to one.
Then the eigenvalues converge to

g−1
σ (1/θk ) + O(N−1/2) = θk + σ2/θk + O(N−1/2).

The fluctuations are given by

(g′σ(ρ1) + o(1))(xi − ρ1) = −1/
√

Nyi + o(N−1/2)
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Fluctuations - localized perturbations
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Resolvent entries

Let m be a fixed integer.

XN =

(
X (m) B
B∗ X̃

)
R̃(z) = (zIN−m − X̃ )−1

By Cramer’s rule

R(m)(z) = (zIm + X (m) + B∗R̃(z)B)−1

Centering, rescaling and then expanding as a geometric
series gives:
√

N(R(m)(z)− gσ(z)Im) = g2
σ(z)(W (m) + YN(z)) + o(1)

where:
YN(z) =

√
N(B∗R̃(z)B − σ2gσ(z)Im)
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Central limit for quadratic forms

Let uN be an N dimensional vector with entries that are
i.i.d. random variables with zero mean and variance one.
Let AN be an independent N × N matrix such that
‖AN‖ < a for all N, 1

N Tr(A2
N)

P−→ a2 and 1
N
∑

i A2
ii

P−→ a2
1.

Then:

1√
N

(u∗NANuN − Tr(AN))
D−→ N (0, κ4a2

1 + 2a2)
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Central limit for quadratic forms

This central limit theorem shows that Yij(z) converges in
finite dimensional distributions to a centered Gaussian
random variable with covariance:

Cov(Yij(z),Yij(w)) =

(1 + δij)σ
2 gσ(w)− gσ(z)

z − w
+ δijκ4gσ(z)gσ(w)

The matrix entires Yij(z) and Ykl(w) are independent up to
symmetry.
Which implies the fluctuations of an eigenvalue with
multiplicity k at z are given by the fluctuations of the
eigenvalues of:

g2
σ(z)U∗(W (m) + G(m)(z))U
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Theorem (Localized case -Pizzo, R., Soshnikov)(
cθj

√
N(λk1+...+kj−1+i − ρj), i = 1, . . . , kj

)
converges in distribution to the distribution of the ordered
eigenvalues of Vj .

Vj := U∗j (Wj + Hj)Uj ,

where Wj is a Wigner random matrix and Hj is a centered
Hermitian Gaussian matrix

E(H2
ss) =

(
m4 − 3σ2

θ2
j

)
+ 2

σ4

θ2
j − σ2

,

E(|Hst |2) =
σ4

θ2
j − σ2

.
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Fluctuations - delocalized perturbations
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Delocalized perturbations

If ‖ui
N‖∞ → 0 for all eigenvectors then the fluctuations are

universal.

(GN(z))lp :=
√

N(ul∗
N RN(z)up

N − E[ul∗
N RN(z)up

N ]).

Converges in finite dimensional distributions to Γ(z) with
independent, centered, Gaussian entries with covariance
given by:

2
2− δlp

(
−gσ(z)gσ(w) +

gσ(z)gσ(w)

1− σ2gσ(z)gσ(w)

)
for l ≤ p and Γlp(z) = Γpl(z) for l > p.
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Delocalized perturbations

If we consider U∗N(WN + GN)UN . Where GN is an N × N
Gaussian matrix with variance as before.
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Delocalized perturbations

Decompose into a Martingale Difference Sequence.
√

N(ul∗
N RN(z)up

N − E[ul∗
N RN(z)up

N ]) =
√

N
∑

k

(Ek − Ek−1)ul∗
N RN(z)up

N

Apply Martingale central limit theorem.
Done by Bai and Pan (’12), we extend to non-vanishing
third moment and joint distribution of several vectors.
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Results
Theorem (Delocalized case -Pizzo, R., Soshnikov)
The difference between(

cθj

√
N(λk1+...+kj−1+i − ρj), i = 1, . . . , kj

)
and the vector formed by the (ordered) eigenvalues of a kj × kj
GUE (GOE) matrix with the variance of the matrix entries given
by

θ2
j σ

2

θ2
j − σ2

plus a deterministic matrix with entries given by

θ2 − σ2

θ4 ul
NM3up

converges in probability to zero.
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Thank you
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