Fluctuations of Outliers of Finite Rank Perturbations to Random Matrices

David Renfrew

Department of Mathematics University of California, Davis

March 15, 2012

Joint work with A. Soshnikov, A. Pizzo, S. O'Rourke

David Renfrew Finite Rank Perturbations

A (1) > A (1) > A

• Consider a random *N* × *N* Wigner real symmetric matrix

$$X_{N} = \frac{1}{\sqrt{N}} W_{N} = \frac{1}{\sqrt{N}} \begin{pmatrix} W_{11} & W_{12} & \dots \\ W_{12} & W_{22} & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

 W_{ij} are i.i.d. for $1 \le i < j \le N$ with $\mathbb{E}[W_{12}] = 0$, $\mathbb{E}[W_{12}^2] = \sigma^2$, $\mathbb{E}[W_{12}^4] < \infty$ W_{ii} are i.i.d. for 1 < i < N with

$$\mathbb{E}[W_{11}] = 0, \quad \mathbb{E}[W_{11}^2] < \infty$$

• If $W_{12} \stackrel{d}{=} \frac{1}{\sqrt{2}} W_{11}$ is Gaussian, then the matrix is said to be from the Gaussian Orthogonal Ensemble (GOE).

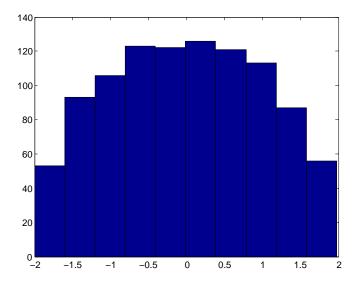
◆□ ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

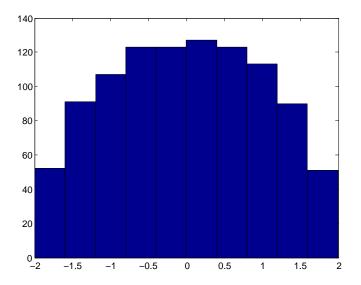
- The most fundamental result for Wigner matrices is the Wigner semi-circle law.
- A real symmetric matrix with eigenvalues λ₁ ≤ ... ≤ λ_N induces a measure, called the empirical spectral distribution (ESD), on the real line given by ¹/_N ∑ δ_{λ_i}.
- The ESD of X_N converges a.s. in distribution to μ_{sc} where

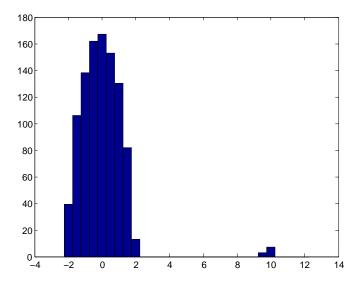
$$\frac{d\mu_{sc}(x)}{dx} = \frac{1}{2\pi\sigma^2}\sqrt{4\sigma^2 - x^2}\mathbf{1}_{[-2\sigma,2\sigma]},$$

and the largest (smallest) eigenvalue converges to 2σ (-2σ) .

★週 → ★ 注 → ★ 注 → 一 注







◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• The Stieltjes Transform, g, of a measure, μ , is given by:

$$g(z)=\int rac{d\mu(x)}{z-x}.$$

 If μ is an ESD of a matrix, M, then its Stieltjes Transform can be written as

$$\frac{1}{N}\mathrm{Tr}(zI-\mathbf{M})^{-1} =: \mathrm{tr}_{N}(\mathbf{R}(z)).$$

• The Stieltjes Transform of μ_{sc} satisfies the equation

$$\sigma^2 g_\sigma^2(z) - z g_\sigma(z) + 1 = 0.$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

- Z. Füredi and J. Komlós ('81) first studied deformed Wigner matrices.
- They assumed the distribution on the entries of the random matrix have a common non-zero mean, *c*.
- This can be viewed as

$$W_N + C$$

where $(C)_{ij} = c$ is a constant matrix.

• The largest eigenvalue is $Nc + \sigma^2/c$ with Gaussian fluctuations.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

- These results were extended to $W_N/\sqrt{N} + C/N$.
- The largest eigenvalue and the edge of the semicircle are both of constant order.
- First done with Gaussian Matrices by S. Peché ('06).
- Then for Wigner matrices by S. Peché and D. Féral ('07).
- A phase transition is observed depending on the value of *c*.

(過) (ヨ) (ヨ)

- M. Capitaine, C. Donati-Martin and D. Féral ('09,'12) consider different forms of the perturbation and higher rank perturbations.
- Assume the distribution is symmetric and satisfies a Poincaré Inequality:

$$\mathbb{V}[f(x)] \leq \mathbb{E}[|\nabla f(x)|^2]$$

- Large eigenvalues converge similarly to the rank one case.
- They also show the fluctuations are non-universal for several special perturbations.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Concurrent with our research Knowles and Yin also consider finite rank perturbations.
- They assume uniform subexponential decay of the entries but allow the eigenvaules of the perturbation to change with *N*.
- Give the locations of the outlying eigenvalues for arbitrary finite rank perturbations as well as the distributions when the multiplicities of each eigenvalue of the perturbation is 1.
- Also show that the distribution of the edge eigenvalues stick to the edge eigenvalues of the non-perturbed model and thus have Tracy-Widom fluctuations.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Deformed random matrices

 In this research we consider deformed random matrices given by

$$M_N = X_N + A_N$$

- $A_N = U_N^* \Theta U_N$ has a fixed finite rank and eigenvalues $\{\theta_j\}_{j=1}^r$.
- By the interlacing theorem *N r* eigenvalues converge to the semi-circle.
- We are interested in the locations and fluctuations of the remaining *r* eigenvalues.

< 回 > < 回 > < 回 > … 回

Theorem (Pizzo, R., Soshnikov)

Let $J_{+\sigma}(\text{resp.}J_{-\sigma})$ be the number of j's such that $\theta_j > \sigma$ (resp., $\theta_j < -\sigma$) and let

$$\rho_j := \theta_j + \frac{\sigma^2}{\theta_j}$$

then:

(a) For $1 \le j \le J_{+\sigma}$, $1 \le i \le k_j$, $\lambda_{k_1+...+k_{j-1}+i} \rightarrow \rho_j$ (b) $\lambda_{k_1+...+k_{J+\sigma}+1} \rightarrow 2\sigma$ (c) $\lambda_{k_1+...+k_{J-J_{-\sigma}}} \rightarrow -2\sigma$ (d) For $j \ge J - J_{-\sigma} + 1$, $1 \le i \le k_j$, $\lambda_{k_1+...+k_{j-1}+i} \rightarrow \rho_j$ the convergence is in probability.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Theorem (Localized case -Pizzo, R., Soshnikov)

$$\left(c_{\theta_j}\sqrt{N}(\lambda_{k_1+\ldots+k_{j-1+i}}-\rho_j),\ i=1,\ldots,k_j\right)$$

converges in distribution to the distribution of the ordered eigenvalues of V_i .

$$\mathbf{V}_j := \mathbf{U}_j^* (\mathbf{W}_j + \mathbf{H}_j) \mathbf{U}_j,$$

where \mathbf{W}_{j} is a Wigner random matrix and \mathbf{H}_{j} is a centered Hermitian Gaussian matrix

$$\mathbb{E}(H_{ss}^2) = \left(\frac{m_4 - 3\sigma^2}{\theta_j^2}\right) + 2\frac{\sigma^4}{\theta_j^2 - \sigma^2},$$
$$\mathbb{E}(|H_{st}|^2) = \frac{\sigma^4}{\theta_j^2 - \sigma^2}.$$

< 🗇 🕨 🔸

Theorem (Delocalized case -Pizzo, R., Soshnikov)

The difference between

$$\left(c_{\theta_j}\sqrt{N}(\lambda_{k_1+\ldots+k_{j-1}+i}-\rho_j),\ i=1,\ldots,k_j\right)$$

and the vector formed by the (ordered) eigenvalues of a $k_j \times k_j$ GOE (GUE) matrix with the variance of the matrix entries given by

$$\frac{\theta_j^2 \sigma^2}{\theta_j^2 - \sigma^2}$$

plus a deterministic matrix with entries given by

$$\frac{\theta^2 - \sigma^2}{\theta^4} \sum_{i,j} u_i^{\prime} \mu_{3,ij} u_j^{\rho}$$

converges in probability to zero.

ヘロマ 人間マ 人間マ 人間マ

• If z is an eigenvalue of M_N

$$det(zI_N-X_N-A_N)=0$$

if additionally it is not an eigenvalue of X_N then

$$det(z - X_N - A_N) = det(z - X_N)det(I + R_N(z)U_N^* \Theta U_N)$$

= det(z - X_N)det(I + \Omega U_N R_N(z)U_N^*)
= det(z - X_N)det(\Theta)det(\Theta^{-1} + U_N R_N(z)U_N^*)

(過) (ヨ) (ヨ)

æ

• We begin with the resolvent identity:

$$egin{aligned} & z \mathcal{R}_{\mathcal{N}}(z) = I_{\mathcal{N}} + X_{\mathcal{N}} \mathcal{R}_{\mathcal{N}}(z) \ & z \mathbb{E}[\mathcal{R}_{ij}(z)] = \delta_{ij} + \sum_{l} \mathbb{E}[X_{il} \mathcal{R}_{lj}(z)] \end{aligned}$$

and use decoupling formula

$$\mathbb{E}(\xi\phi(\xi)) = \sum_{a=0}^{p} \frac{\kappa_{a+1}}{a!} \mathbb{E}(\phi^{(a)}(\xi)) + \epsilon$$

・ロト ・四ト ・ヨト ・ヨト ・

On the diagonal this becomes

$$\mathbb{E}[R_{ii}(z)] = 1/(z - \sigma^2 g_{\sigma}(z)) + O(N^{-1}) = g_{\sigma}(z) + O(N^{-1})$$

• On the off-diagonal this implies

$$\mathbb{E}[R_{ij}(z)] = \frac{\kappa_{3,ij}}{N^{3/2}}g_{\sigma}^{4}(z) + o(N^{3/2})$$

Similarly, we can bound the variance of quadratic forms

$$\mathbb{V}[\mathbf{u}_N^*\mathbf{R}_N(z)\mathbf{v}_N] = O(N^{-1})$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

ъ

• Let \mathbf{u}_N , \mathbf{v}_N be a sequence of *N* dimensional unit vectors.

$$\sqrt{N}\mathbb{E}[\mathbf{u}_N^*\mathbf{R}_N(z)\mathbf{v}_N] - \frac{1}{N}g_\sigma^4(z)\mathbf{u}_N^*\mathbf{M}_3\mathbf{v}_N = \sqrt{N}g_\sigma(z)\mathbf{u}_N^*\mathbf{v}_N + o(1)$$

where $\mathbf{M}_3 = (1 - \delta_{ij})\kappa_{3,ij}$.

• Furthermore, if $\|\mathbf{u}_N\|_1$ or $\|\mathbf{v}_N\|_1$ is $o(\sqrt{N})$ then the second term on the left side is o(1).

Characterization of outlying eigenvalues

• The eigenvalues are z such that

$$\det(\Theta^{-1}-U_N^*R(z)U_N)=0.$$

By the previous estimates and Markov's Inequality

$$||U_N^* R_N(z) U_N - g_\sigma(z) I_r|| = O(N^{-1/2})$$

with probability going to one.

• Then the eigenvalues converge to

$$g_{\sigma}^{-1}(1/\theta_k) + O(N^{-1/2}) = \theta_k + \sigma^2/\theta_k + O(N^{-1/2}).$$

• The fluctuations are given by

$$(g'_{\sigma}(\rho_1) + o(1))(x_i - \rho_1) = -1/\sqrt{N}y_i + o(N^{-1/2})$$

伺 とく ヨ とく ヨ と

Fluctuations - localized perturbations

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Resolvent entries

• Let *m* be a fixed integer.

$$X_N = egin{pmatrix} X^{(m)} & B \ B^* & ilde X \end{pmatrix}$$

$$\tilde{R}(z) = (zI_{N-m} - \tilde{X})^{-1}$$

• By Cramer's rule

$$R^{(m)}(z) = (zI_m + X^{(m)} + B^*\tilde{R}(z)B)^{-1}$$

Centering, rescaling and then expanding as a geometric series gives:

$$\sqrt{N}(R^{(m)}(z) - g_{\sigma}(z)I_m) = g_{\sigma}^2(z)(W^{(m)} + Y_N(z)) + o(1)$$

where:

$$Y_N(z) = \sqrt{N} (B^* \tilde{R}(z) B - \sigma^2 g_\sigma(z) I_m)$$

- Let u_N be an N dimensional vector with entries that are i.i.d. random variables with zero mean and variance one.
- Let A_N be an independent $N \times N$ matrix such that $||A_N|| < a$ for all N, $\frac{1}{N} \text{Tr}(A_N^2) \xrightarrow{P} a_2$ and $\frac{1}{N} \sum_i A_{ii}^2 \xrightarrow{P} a_1^2$. Then:

$$\frac{1}{\sqrt{N}}\left(u_N^*A_Nu_N-\operatorname{Tr}(A_N)\right)\xrightarrow{D}\mathcal{N}(0,\kappa_4a_1^2+2a_2)$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

Central limit for quadratic forms

 This central limit theorem shows that Y_{ij}(z) converges in finite dimensional distributions to a centered Gaussian random variable with covariance:

$$Cov(Y_{ij}(z), Y_{ij}(w)) = (1 + \delta_{ij})\sigma^2 \frac{g_{\sigma}(w) - g_{\sigma}(z)}{z - w} + \delta_{ij}\kappa_4 g_{\sigma}(z)g_{\sigma}(w)$$

- The matrix entires $Y_{ij}(z)$ and $Y_{kl}(w)$ are independent up to symmetry.
- Which implies the fluctuations of an eigenvalue with multiplicity *k* at *z* are given by the fluctuations of the eigenvalues of:

$$g_\sigma^2(z)U^*(W^{(m)}+G^{(m)}(z))U$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Localized case -Pizzo, R., Soshnikov)

$$\left(c_{\theta_j}\sqrt{N}(\lambda_{k_1+\ldots+k_{j-1+i}}-\rho_j),\ i=1,\ldots,k_j\right)$$

converges in distribution to the distribution of the ordered eigenvalues of V_i .

$$\mathbf{V}_j := \mathbf{U}_j^* (\mathbf{W}_j + \mathbf{H}_j) \mathbf{U}_j,$$

where \mathbf{W}_{j} is a Wigner random matrix and \mathbf{H}_{j} is a centered Hermitian Gaussian matrix

$$\mathbb{E}(H_{ss}^2) = \left(\frac{m_4 - 3\sigma^2}{\theta_j^2}\right) + 2\frac{\sigma^4}{\theta_j^2 - \sigma^2},$$
$$\mathbb{E}(|H_{st}|^2) = \frac{\sigma^4}{\theta_j^2 - \sigma^2}.$$

ъ

・ 同 ト ・ ヨ ト ・ ヨ ト …

Fluctuations - delocalized perturbations

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Delocalized perturbations

 If ||u_Nⁱ||_∞ → 0 for all eigenvectors then the fluctuations are universal.

$$(\mathbf{G}_N(z))_{lp} := \sqrt{N} (\mathbf{u}_N^{l*} \mathbf{R}_N(z) \mathbf{u}_N^p - \mathbb{E} [\mathbf{u}_N^{l*} \mathbf{R}_N(z) \mathbf{u}_N^p]).$$

Converges in finite dimensional distributions to $\Gamma(z)$ with independent, centered, Gaussian entries with covariance given by:

$$\frac{2}{2-\delta_{lp}}\left(-g_{\sigma}(z)g_{\sigma}(w)+\frac{g_{\sigma}(z)g_{\sigma}(w)}{1-\sigma^{2}g_{\sigma}(z)g_{\sigma}(w)}\right)$$

for $l \leq p$ and $\Gamma_{lp}(z) = \overline{\Gamma_{pl}(\overline{z})}$ for l > p.

◆□ → ◆ 三 → ◆ 三 → ◆ ○ ◆

• If we consider $U_N^*(W_N + G_N)U_N$. Where G_N is an $N \times N$ Gaussian matrix with variance as before.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

Decompose into a Martingale Difference Sequence.

$$\sqrt{N}(\mathbf{u}_N^{\prime*}\mathbf{R}_N(z)\mathbf{u}_N^{\rho}-\mathbb{E}[\mathbf{u}_N^{\prime*}\mathbf{R}_N(z)\mathbf{u}_N^{\rho}])=\sqrt{N}\sum_k(\mathbb{E}_k-\mathbb{E}_{k-1})\mathbf{u}_N^{\prime*}\mathbf{R}_N(z)\mathbf{u}_N^{\rho}$$

- Apply Martingale central limit theorem.
- Done by Bai and Pan ('12), we extend to non-vanishing third moment and joint distribution of several vectors.

(同) くほり くほう

Theorem (Delocalized case -Pizzo, R., Soshnikov)

The difference between

$$\left(c_{\theta_j}\sqrt{N}(\lambda_{k_1+\ldots+k_{j-1}+i}-\rho_j),\ i=1,\ldots,k_j\right)$$

and the vector formed by the (ordered) eigenvalues of a $k_j \times k_j$ GUE (GOE) matrix with the variance of the matrix entries given by

$$\frac{\theta_j^2 \sigma^2}{\theta_j^2 - \sigma^2}$$

plus a deterministic matrix with entries given by

$$\frac{\theta^2 - \sigma^2}{\theta^4} \mathbf{u}_N^{\prime} \mathbf{M}_3 \mathbf{u}^{\rho}$$

converges in probability to zero.

くロト (過) (目) (日)

ъ

Thank you

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● のへぐ